Publications by authors named "J Santos-Echeandia"

Microplastics (MPs) raise concerns not only as pollutants themselves, but also due to their ability to act as vectors of pollutants adsorbed from seawater, transferring them to marine organisms. However, the relevance of MPs as carriers of pollutants compared to microalgae needs further exploration. This study compared the role of MPs (2-10 μm non-oxidized and 10-15 μm oxidized high-density polyethylene) and natural organic particles (Rhodomonas lens microalgae, MA) as carriers of mercury (Hg, 2.

View Article and Find Full Text PDF

The levels of metals in the waters of the Mar Menor lagoon are higher in the southern than in the northern zone both in the dissolved (As: 1.78 μg L north vs 1.86 μg L south; Cd: 0.

View Article and Find Full Text PDF

The objective of this study was to determine whether and to what extent microplastics (MPs) enhance the toxicity of pollutants as well as whether pollutant-loaded MPs act as relevant vectors of chemical pollutants. With this aim, the toxicity for mussel and sea urchin embryos of: 1) three dissolved pollutants (Pol): chlorpyrifos (CPF), fluoranthene (FLT) and mercury (Hg); 2) their mixture with Microplastics (MP + Pol); and 3) pollutant-loaded MPs (MP), was assessed. Analyses of CPF, FLT and Hg were also performed to evaluate the transfer among dissolved and particulate phases.

View Article and Find Full Text PDF

The speciation and bioavailability of copper (Cu) in the marine environment are affected by the presence of dissolved organic matter (DOM). Previous studies conducted at dissolved Cu concentrations >100 nM confirmed that Cu bioavailability depends on the concentration of labile Cu, as measured by anodic stripping voltammetry (ASV), which aligns with the expectations of the biotic ligand model (BLM). However, ambient Cu concentrations in coastal waters are generally lower, ranging between 1 and 80 nM, and the effect of DOM on the bioavailability of Cu to marine organisms has not been tested within that range of Cu concentrations.

View Article and Find Full Text PDF