Publications by authors named "J Sanchez Olavarria"

Studies in the greater galago have not provided a comprehensive description of the organization of eye-specific retino-geniculate-cortical projections to the recipient layers in V1. Here we demonstrate the overall patterns of ocular dominance domains in layers III, IV, and VI revealed following a monocular injection of the transneuronal tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP). We also correlate these patterns with the array of cytochrome oxidase (CO) blobs in tangential sections through the unfolded and flattened cortex.

View Article and Find Full Text PDF

Callosal patches in primary visual cortex of Long Evans rats, normally associated with ocular dominance columns, emerge by postnatal day 10 (P10), but they do not form in rats monocularly enucleated a few days before P10. We investigated whether we could replicate the results of monocular enucleation by using tetrodotoxin (TTX) to block neural activity in one eye, or in primary visual cortex. Animals received daily intravitreal (P6-P9) or intracortical (P7-P9) injections of TTX, and our physiological evaluation of the efficacy of these injections indicated that the blockade induced by a single injection lasted at least 24 h.

View Article and Find Full Text PDF

In Long Evans rats, ocular dominance columns (ODCs) in V1 overlap with patches of callosal connections. Using anatomical tracers, we found that ODCs and callosal patches are present at postnatal day 10 (P10), several days before eye opening, and about 10 days before the activation of the critical period for ocular dominance plasticity (~P20). In rats monocularly enucleated at P10 and perfused ~P20, ODCs ipsilateral to the remaining eye desegregated, indicating that rat ODCs are highly susceptible to monocular enucleation during a precritical period.

View Article and Find Full Text PDF

Background: Congenital muscular dystrophies (CMD) are a clinically and genetically heterogeneous group of neuromuscular disorders characterized by muscle weakness. The two most prevalent forms of CMD, collagen VI-related myopathies (COL6RM) and laminin α2 deficient CMD type 1A (MDC1A), are both caused by deficiency or dysfunction of extracellular matrix proteins. Previously, we showed that an intramuscular transplantation of human adipose-derived stem cells (ADSC) into the muscle of the Col6a1 mice results in efficient stem cell engraftment, migration, long-term survival, and continuous production of the collagen VI protein, suggesting the feasibility of the systemic cellular therapy for COL6RM.

View Article and Find Full Text PDF

In albino rats, it has been reported that lateral striate cortex (V1) is highly binocular, and that input from the ipsilateral eye to this region comes through the callosum. In contrast, in Long Evans rats, this region is nearly exclusively dominated by the contralateral eye even though it is richly innervated by the callosum (Laing, Turecek, Takahata, & Olavarria, 2015). We hypothesized that the inability of callosal connections to relay ipsilateral eye input to lateral V1 in Long Evans rats is a consequence of the existence of ocular dominance columns (ODCs), and of callosal patches in register with ipsilateral ODCs in the binocular region of V1 (Laing et al.

View Article and Find Full Text PDF