Publications by authors named "J Sallet"

Low-intensity transcranial ultrasound stimulation (TUS) is a noninvasive technique that safely alters neural activity, reaching deep brain areas with good spatial accuracy. We investigated the effects of TUS in macaques using a recent metric, the synergy minus redundancy rank gradient, which quantifies different kinds of neural information processing. We analyzed this high-order quantity on the fMRI data after TUS in two targets: the supplementary motor area (SMA-TUS) and the frontal polar cortex (FPC-TUS).

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has created normative growth charts for the brain structure of rhesus macaques, filling a gap in understanding nonhuman primate neurodevelopment.
  • The study analyzed 1,522 MRI scans from 1,024 macaques to identify developmental patterns in brain volume, cortical thickness, and surface area throughout their lifespan.
  • These findings not only highlight key milestones in macaque brain development but also allow for meaningful comparisons to human brain maturation, providing a valuable resource for future neuroscience studies.
View Article and Find Full Text PDF

While the hippocampus is key for human cognitive abilities, it is also a phylogenetically old cortex and paradoxically considered evolutionarily preserved. Here, we introduce a comparative framework to quantify preservation and reconfiguration of hippocampal organisation in primate evolution, by analysing the hippocampus as an unfolded cortical surface that is geometrically matched across species. Our findings revealed an overall conservation of hippocampal macro- and micro-structure, which shows anterior-posterior and, perpendicularly, subfield-related organisational axes in both humans and macaques.

View Article and Find Full Text PDF

Low-intensity Transcranial Ultrasound Stimulation (TUS) is a promising non-invasive technique for deep-brain stimulation and focal neuromodulation. Research with animal models and computational modelling has raised the possibility that TUS can be biased towards enhancing or suppressing neural function. Here, we first conduct a systematic review of human TUS studies for perturbing neural function and alleviating brain disorders.

View Article and Find Full Text PDF
Article Synopsis
  • There are noticeable sex differences in how often certain neurodevelopmental and neurodegenerative disorders occur in humans, prompting research in other species to understand these differences better.
  • In a study using female and male rhesus macaques, researchers created a large dataset to analyze gene expression patterns related to sex biases, revealing similarities to human conditions like autism.
  • The study found that genes with sex biases show higher genetic variability and specific expression in different tissues, suggesting these genes could evolve quickly. This research supports using rhesus macaques as a model to study sex differences in neurological diseases.
View Article and Find Full Text PDF