Aim: To characterize microbial communities present in natural rubber (NR) coagula from Hevea brasiliensis latex during maturation and identify microbial taxa (bacteria and fungi) having an impact on dry NR properties.
Methods And Results: Microbial community dynamics in NR coagula maturated under controlled conditions were compared and related with the evolution of dry NR properties. The pyrosequencing of 16S (119 837 effective reads) and 18S (131 879 effective reads) rRNA gene regions was performed on 21 samples covering different maturation times and two aeration conditions.
Natural rubber, produced by coagulation of the latex from the tree Hevea brasiliensis, is an important biopolymer used in many applications for its outstanding properties. Besides polyisoprene, latex is rich in many nonisoprene components such as carbohydrates, proteins and lipids and thereby constitutes a favourable medium for the development of micro-organisms. The fresh rubber coagula obtained by latex coagulation are not immediately processed, allowing the development of various microbial communities.
View Article and Find Full Text PDFBiochemical studies of lipids bound to rubber particles have been complicated due to the solubility of polyisoprene chains in most extracting solvents and the rather delicate nature of polar lipids that are often denatured when traditional solvent extraction techniques are employed. In this paper, we describe a traditional technique and accompanying solvents that permit optimal extraction of rubber particle bound lipids. The technique, which is validated after characterizing the lipid extracts by elemental analysis, silica column adsorption and thin layer chromatography, appeared more suitable for extracting total lipids with optimal glycolipid and phospholipid contents.
View Article and Find Full Text PDF