Publications by authors named "J S Thalgott"

Non-invasive in vivo imaging of the vasculature is a powerful tool for studying disease mechanisms in rodents. To achieve high sensitivity imaging of the microvasculature using Doppler ultrasound methods, imaging modalities employing the concept of ultrafast imaging are preferred. By increasing the frame rate of the ultrasound scanner to thousands of frames per second, it becomes possible to improve the sensitivity of the blood flow down to 2 mm/s and to obtain functional information about the microcirculation in comparison to a sensitivity of around 1 cm/s in conventional Doppler modes.

View Article and Find Full Text PDF

Hereditary Hemorrhagic Telangiectasia type 1 (HHT1) is an autosomal dominant inherited disease characterized by arteriovenous malformations and hemorrhage. HHT1 is caused by mutations in , which encodes an ancillary receptor for Transforming Growth Factor-β/Bone Morphogenetic Protein-9 expressed in all vascular endothelial cells. Haploinsufficiency is widely accepted as the underlying mechanism for HHT1.

View Article and Find Full Text PDF

Recent advances in induced pluripotent stem cells (iPSC) and gene editing technologies enable the development of novel human cell-based disease models for phenotypic drug discovery (PDD) programs. Although these novel devices could predict the safety and efficacy of investigational drugs in humans more accurately, their development to the clinic still strongly rely on mammalian data, notably the use of mouse disease models. In parallel to human organoid or organ-on-chip disease models, the development of relevant in vitro mouse models is therefore an unmet need for evaluating direct drug efficacy and safety comparisons between species and in vivo and in vitro conditions.

View Article and Find Full Text PDF

Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder characterized by multi-systemic vascular dysplasia affecting 1 in 5000 people worldwide. Individuals with HHT suffer from many complications including nose and gastrointestinal bleeding, anemia, iron deficiency, stroke, abscess, and high-output heart failure. Identification of the causative gene mutations and the generation of animal models have revealed that decreased transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signaling and increased vascular endothelial growth factor (VEGF) signaling activity in endothelial cells are responsible for the development of the vascular malformations in HHT.

View Article and Find Full Text PDF

Background: Hereditary Hemorrhagic Telangiectasia type 2 (HHT2) is an inherited genetic disorder characterized by vascular malformations and hemorrhage. HHT2 results from ACVRL1 haploinsufficiency, the remaining wild-type allele being unable to contribute sufficient protein to sustain endothelial cell function. Blood vessels function normally but are prone to respond to angiogenic stimuli, leading to the development of telangiectasic lesions that can bleed.

View Article and Find Full Text PDF