The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throughput elucidation of molecular structures. However, decoding a molecular structure from its mass spectrum is exceptionally challenging, even when performed by human experts.
View Article and Find Full Text PDFMotivation: Molecular representation learning (MRL) models molecules with low-dimensional vectors to support biological and chemical applications. Current methods primarily rely on intrinsic molecular information to learn molecular representations, but they often overlook effectively integrating domain knowledge into MRL.
Results: In this article, we develop a reaction-enhanced graph learning (RXGL) framework for MRL, utilizing chemical reactions as domain knowledge.
Multi-omics analysis offers a promising avenue to a better understanding of complex biological phenomena. In particular, untangling the pathophysiology of multifactorial health conditions such as the inflammatory bowel disease (IBD) could benefit from simultaneous consideration of several omics levels. However, taking full advantage of multi-omics data requires the adoption of suitable new tools.
View Article and Find Full Text PDFMotivation: Drug-target interactions (DTIs) hold a pivotal role in drug repurposing and elucidation of drug mechanisms of action. While single-targeted drugs have demonstrated clinical success, they often exhibit limited efficacy against complex diseases, such as cancers, whose development and treatment is dependent on several biological processes. Therefore, a comprehensive understanding of primary, secondary and even inactive targets becomes essential in the quest for effective and safe treatments for cancer and other indications.
View Article and Find Full Text PDFIn this mini-review, we explore the new prediction methods for drug combination synergy relying on high-throughput combinatorial screens. The fast progress of the field is witnessed in the more than thirty original machine learning methods published since 2021, a clear majority of them based on deep learning techniques. We aim to put these articles under a unifying lens by highlighting the core technologies, the data sources, the input data types and synergy scores used in the methods, as well as the prediction scenarios and evaluation protocols that the articles deal with.
View Article and Find Full Text PDF