Publications by authors named "J S Pappalardo"

Multiple sclerosis (MS) is a complex genetically mediated autoimmune disease of the central nervous system where anti-CD20-mediated B cell depletion is remarkably effective in the treatment of early disease. While previous studies investigated the effect of B cell depletion on select immune cell subsets using flow cytometry-based methods, the therapeutic impact on patient immune landscape is unknown. In this study, we explored how a therapy-driven " " modulates the diverse immune landscape by measuring transcriptomic granularity with single-cell RNA sequencing (scRNAseq).

View Article and Find Full Text PDF

Objective/background: Over the past decade, multidisciplinary "toe and flow" programs have gained great popularity, with proven benefits in limb salvage. Many vascular surgeons have incorporated podiatrists into their practices. The viability of this practice model requires close partnership, hospital support, and financial sustainability.

View Article and Find Full Text PDF

Dendritic cells serve as the main immune cells that trigger the immune response. We developed a simple and cost-effective nanovaccine platform based on the α1',2-mannobiose derivative for dendritic cell targeting. In previous work, we have formulated the α1,2-mannobiose-based nanovaccine platform with plasmid DNA and tested it in cattle against BoHV-1 infection.

View Article and Find Full Text PDF

Purpose: The c.1430A > G (Asp477Gly) variant in RPE65 has been reported in Irish and Scottish families with either an autosomal dominant retinal dystrophy (adRD) that resembles choroideremia, a vitelliform macular dystrophy or an isolated macular atrophy. We report novel features on multimodal imaging and the natural history of a family harbouring this variant in combination with the BEST1 c.

View Article and Find Full Text PDF

Macrophages are innate immune cells that contribute to fighting infections, tissue repair, and maintaining tissue homeostasis. To enable such functional diversity, macrophages resolve potentially conflicting cues in the microenvironment via mechanisms that are unclear. Here, we use single-cell RNA sequencing to explore how individual macrophages respond when co-stimulated with inflammatory stimuli LPS and IFN-γ and the resolving cytokine IL-4.

View Article and Find Full Text PDF