Publications by authors named "J S Lapington"

Microchannel plate (MCP) photomultiplier tubes (PMTs) are a well-established instrument for the inertial confinement fusion (ICF) community, with several detectors installed at NIF, Omega (LLE Rochester), and Orion (AWE). The analog signals produced at these major ICF facilities cover many orders of magnitude and often need multiple detectors operating at different levels of electron gain. As such, understanding the upper saturation limit of MCP-PMTs to large, low rate signals takes on a high importance.

View Article and Find Full Text PDF

Graphene is a highly promising material in the development of new photodetector technologies, in particular due its tunable optoelectronic properties, high mobilities and fast relaxation times coupled to its atomic thinness and other unique electrical, thermal and mechanical properties. Optoelectronic applications and graphene-based photodetector technology are still in their infancy, but with a range of device integration and manufacturing approaches emerging this field is progressing quickly. In this review we explore the potential of graphene in the context of existing single photon counting technologies by comparing their performance to simulations of graphene-based single photon counting and low photon intensity photodetection technologies operating in the visible, terahertz and X-ray energy regimes.

View Article and Find Full Text PDF

Despite the rapid advances in solid state technologies such as the silicon photomultiplier (SiPM), microchannel plate (MCP) photomultipliers still offer a proven and practical technological solution for high channel count pixellated photon-counting systems with very high time resolution. We describe progress towards a 256 channel optical photon-counting system using CERN-developed NINO and HTDC ASICs, and designed primarily for time resolved spectroscopy in life science applications. Having previously built and demonstrated a 18 mm diameter prototype tube with an 8×8 channel readout configuration and <43 ps rms single photon timing resolution, we are currently developing a 40 mm device with a 32×32 channel readout.

View Article and Find Full Text PDF