It has been known for decades that the observed number of baryons in the local Universe falls about 30-40 per cent short of the total number of baryons predicted by Big Bang nucleosynthesis, as inferred from density fluctuations of the cosmic microwave background and seen during the first 2-3 billion years of the Universe in the so-called 'Lyman α forest' (a dense series of intervening H I Lyman α absorption lines in the optical spectra of background quasars). A theoretical solution to this paradox locates the missing baryons in the hot and tenuous filamentary gas between galaxies, known as the warm-hot intergalactic medium. However, it is difficult to detect them there because the largest by far constituent of this gas-hydrogen-is mostly ionized and therefore almost invisible in far-ultraviolet spectra with typical signal-to-noise ratios.
View Article and Find Full Text PDFPubl Astron Soc Jpn Nihon Tenmon Gakkai
April 2018
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 - 300 keV band and the Kashima NICT radio observatory in the 1.4 - 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission.
View Article and Find Full Text PDFTidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray and optical/ultraviolet flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate.
View Article and Find Full Text PDFSupermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before.
View Article and Find Full Text PDFWe present a preliminary analysis of the 1-10 keV spectrum of the massive X-ray binary Cygnus X-3, obtained with the high-energy transmission grating spectrometer on the Chandra X-Ray Observatory. The source reveals a richly detailed discrete emission spectrum, with clear signatures of photoionization-driven excitation. Among the spectroscopic novelties in the data are the first astrophysical detections of a number of He-like "triplets" (Si, S, Ar) with emission-line ratios characteristic of photoionization equilibrium, fully resolved narrow radiative recombination continua of Mg, Si, and S, the presence of the H-like Fe Balmer series, and a clear detection of an approximately 800 km s-1 large-scale velocity field as well as an approximately 1500 km s-1 FWHM Doppler broadening in the source.
View Article and Find Full Text PDF