Objectives: The objective of this article is to assess the status of road safety in Asia and present accident and injury prevention strategies based on global road safety improvement experiences and discuss the way forward by indicating opportunities and countermeasures that could be implemented to achieve a new level of safety in Asia.
Methods: This study provides a review and analyses of data in the literature, including from the World Health Organization (WHO) and World Bank, and a review of lessons learned from best practices in high-income countries. In addition, an estimation of costs due to road transport injuries in Asia and review of future trends in road transport is provided.
Electrospinning has proven to be a promising method to produce scaffolds for tissue engineering despite the frequently encountered limitations in 3-dimensional tissue formation due to a lack of cell infiltration. To fully unlock the potential of electrospun scaffolds for tissue engineering, the void space within the fibrous network needs to be increased substantially and in a controlled manner. Low-temperature electrospinning (LTE) increases the fiber to fiber distance by embedding ice particles as void spacers during fiber deposition.
View Article and Find Full Text PDFObjectives/hypothesis: The majority of laryngectomy patients fail to use a hands-free valve on a daily basis, mainly due to fixation problems of the adhesive baseplate housing. To support adhesive housings during hands-free speech a new external neck brace (ENB 2.0) was developed.
View Article and Find Full Text PDFObjective: The aim of this study is to model occupant kinematics in an autonomous braking event by using a finite element (FE) human body model (HBM) with active muscles as a step toward HBMs that can be used for injury prediction in integrated precrash and crash simulations.
Methods: Trunk and neck musculature was added to an existing FE HBM. Active muscle responses were achieved using a simplified implementation of 3 feedback controllers for head angle, neck angle, and angle of the lumbar spine.
Stapp Car Crash J
November 2009
Injury assessment reference values (IARV) predicting neck injuries are currently not available for side facing seated aircraft passengers in crash conditions. The aircraft impact scenario results in inertial loading of the head and neck, a condition known to be inherently different from common automotive side impact conditions as crash pulse and seating configurations are different. The objective of this study is to develop these IARV for the European Side Impact Dummy-2 (ES-2) previously selected by the US-FAA as the most suitable ATD for evaluating side facing aircraft seats.
View Article and Find Full Text PDF