The energetically favorable formation of atomically precise clusters, known as magic size clusters, in the solution phase enables a precision nanoscale synthesis with exquisite uniformity. We report the synthesis of magic size clusters via vapor infiltration of atomic layer deposition precursors directly in a polymer thin film. Sequential infiltration of trimethylindium vapor and hydrogen sulfide gas into poly(methyl methacrylate) leads to the formation of clusters with uniform properties consistent with a magic size cluster─InS(CH).
View Article and Find Full Text PDFThis article describes primary data and resources available from the Boston Adolescent Neuroimaging of Depression and Anxiety (BANDA) study, a novel arm of the Human Connectome Project (HCP). Data were collected from 215 adolescents (14-17 years old), 152 of whom had current diagnoses of anxiety and/or depressive disorders at study intake. Data include cross-sectional structural (T1- and T2-weighted), functional (resting state and three tasks), and diffusion-weighted magnetic resonance images.
View Article and Find Full Text PDFThe removal of toxic heavy metal ions from water resources is crucial for environmental protection and public health. In this study, we address this challenge by developing a surface functionalization technique for the selective adsorption of these contaminants. Our approach involves atomic layer deposition (ALD) followed by vapor-phase silanization of porous substrates.
View Article and Find Full Text PDFNew strategies to synthesize nanometer-scale silicon dioxide (SiO) patterns have drawn much attention in applications such as microelectronic and optoelectronic devices, membranes, and sensors, as we are approaching device dimensions shrinking below 10 nm. In this regard, sequential infiltration synthesis (SIS), a two-step gas-phase molecular assembly process that enables localized inorganic material growth in the targeted reactive domains of polymers, is an attractive process. In this work, we performed in situ Fourier transform infrared spectroscopy (FTIR) measurements during SiO SIS to investigate the reaction mechanism of trimethylaluminum (TMA) and tri(tert-pentoxy) silanol (TPS) precursors with polymers having ester functional groups (poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), polycaprolactone (PCL), and poly(t-butyl methacrylate) (PBMA)), for the purpose of growing patterned nanomaterials.
View Article and Find Full Text PDF