Publications by authors named "J S De Belleroche"

Free d-amino acids (d-AAs) are emerging as a novel and important class of signaling molecules in many organs, including the brain and endocrine systems. There has been considerable progress in our understanding of the fundamental roles of these atypical messengers, with increasingly recognized implications in a wide range of neuropathologies, including schizophrenia (SCZ), epilepsy, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), substance abuse, and chronic pain, among others. Research has enabled the discovery that d-serine, d-aspartate and more recently d-cysteine are essential for the healthy development and function of the central nervous system (CNS).

View Article and Find Full Text PDF

Zinc transporter 3 (ZnT3) has been implicated in the aetiopathology of schizophrenia. In this pilot study, we tested the hypothesis that the presence of a minor allele of two variants in the gene encoding ZnT3 (SLC30A3) affects brain glutamate and cognitive activity in patients with schizophrenia and bipolar affective disorder. Fifteen patients with schizophrenia (SCZ), 15 with bipolar affective disorder type 2 (BD), and 14 healthy volunteers (HV) were genotyped for two SLC30A3 single nucleotide polymorphisms (rs11126936 and rs11126929).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a disorder that affects motor neurons in motor cortex and spinal cord, and the degeneration of both neuronal populations is a critical feature of the disease. Abnormalities in protein homeostasis (proteostasis) are well established in ALS. However, they have been investigated mostly in spinal cord but less so in motor cortex.

View Article and Find Full Text PDF

Mutations in TANK binding kinase 1 (TBK1) have been linked to amyotrophic lateral sclerosis. Some TBK1 variants are nonsense and are predicted to cause disease through haploinsufficiency; however, many other mutations are missense with unknown functional effects. We exome sequenced 699 familial amyotrophic lateral sclerosis patients and identified 16 TBK1 novel or extremely rare protein-changing variants.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis.

View Article and Find Full Text PDF