Publications by authors named "J S COWELL"

Background: Leukemias driven by activated, chimeric FGFR1 kinases typically progress to AML which have poor prognosis. Mouse models of this syndrome allow detailed analysis of cellular and molecular changes occurring during leukemogenesis. We have used these models to determine the effects of leukemia development on the immune cell composition in the leukemia microenvironment during leukemia development and progression.

View Article and Find Full Text PDF

The WASF3 gene promotes cancer cell invasion and metastasis, and genetic inactivation leads to suppression of metastasis. To identify small molecules that might interfere with WASF3 function, we performed an in silico docking study to the regulatory pocket of WASF3 using the National Cancer Institute (NCI) diversity set VI small molecule library. Compounds that showed the maximum likelihood of interaction with WASF3 were screened for their effect on cell movement in breast and prostate cancer cells, a well-established predictor of invasion and metastasis.

View Article and Find Full Text PDF

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic. The main protease (M, 3CL) of SARS-CoV-2 is a key enzyme that processes polyproteins translated from the viral RNA. M is therefore an attractive target for the design of inhibitors that block viral replication.

View Article and Find Full Text PDF

A genomic and bioactivity informed analysis of the metabolome of the extremophile Amycolatopsis sp. DEM30355 has allowed for the discovery and isolation of the polyketide antibiotic tatiomicin. Identification of the biosynthetic gene cluster was confirmed by heterologous expression in Streptomyces coelicolor M1152.

View Article and Find Full Text PDF

Background: Myeloid and lymphoid malignancies associated with chimeric FGFR1 kinases are the hallmark of stem cell leukemia and lymphoma syndrome (SCLL). In all cases, FGFR1 kinase is constitutively phosphoactivated as a result of chromosome translocations, which lead to acquisition of dimerization motifs in the chimeric proteins. Recently, we demonstrated that these chimeric kinases could be cleaved by granzyme B to generate a truncated derivative, tnFGFR1, which localized exclusively into the nucleus and was not phosphorylated.

View Article and Find Full Text PDF