Publications by authors named "J S Biteen"

Bacterial ribonucleoprotein bodies (BR-bodies) are dynamic biomolecular condensates that play a pivotal role in RNA metabolism. We investigated how BR-bodies significantly influence mRNA fate by transitioning between liquid- and solid-like states in response to stress. With a combination of single-molecule and bulk fluorescence microscopy, biochemical assays, and quantitative analyses, we determine that BR-bodies promote efficient mRNA decay in a liquid-like condensate during exponential growth.

View Article and Find Full Text PDF

Plasmonic antennas increase the photon flux in their vicinity, which can lead to plasmon-enhanced fluorescence for molecules near these nanostructures. Here, we combine plasmon-coupled fluorescence and fluorescence-detected circular dichroism to build a specific and sensitive detection strategy for chiral single molecules. Electromagnetic simulations indicate that a two-dimensional gold nanoparticle dimer antenna enhances the electric field and optical chirality of a plane wave in its near field.

View Article and Find Full Text PDF

Unlabelled: Flagella are complex, trans-envelope nanomachines that localize to species- specific cellular addresses. Here we study the localization dynamics of the earliest stage of basal body formation in using a fluorescent fusion to the C-ring protein FliM. We find that basal bodies do not exhibit dynamic subunit exchange and are largely stationary at steady state, consistent with flagellar assembly through the peptidoglycan.

View Article and Find Full Text PDF

Visualizing and measuring molecular-scale interactions in living cells represents a major challenge, but recent advances in single-molecule super-resolution microscopy are bringing us closer to achieving this goal. Single-molecule super-resolution microscopy enables high-resolution and sensitive imaging of the positions and movement of molecules in living cells. HP1 proteins are important regulators of gene expression because they selectively bind and recognize H3K9 methylated (H3K9me) histones to form heterochromatin-associated protein complexes that silence gene expression, but several important mechanistic details of this process remain unexplored.

View Article and Find Full Text PDF