Publications by authors named "J S Bhosale"

Phosphorus (P) is a quintessential macronutrient utilized by plants to support various metabolic processes during growth and development. Recent studies have revealed the pivotal role of inositol hexa-kis/pyrophosphate (InsP6-8), the derivatives of Myo-inositol (MI), in facilitating the interaction between SYG1/PHO81/XPR1 (SPX) and Phosphate starvation response (PHR) proteins. Myo-inositol phosphate synthase (MIPS) catalyzes the first committed step in MI biosynthesis.

View Article and Find Full Text PDF

The article describes the use of facile one-pot, high-yielding reactions to synthesize substituted 3,4-dimethyl-1-pyrrole-2-carboxamides - and carbohydrazide analogues - as potential antifungal and antimicrobial agents. The structural identity and purity of the synthesized compounds were assigned based on appropriate spectroscopic techniques. Synthesized compounds were assessed in vitro for antifungal and antibacterial activity.

View Article and Find Full Text PDF

Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements.

View Article and Find Full Text PDF

A novel pyrrole-substituted salicylimine zinc (II) ion complex has been synthesized and evaluated its anion binding affinity. The probe 4 has high selectivity for HSO4 (-) over other anions in CH3OH:H2O (70:30, v/v) solvent system. The emission intensity of 4 was quenched upon addition of HSO4 (-).

View Article and Find Full Text PDF

Cation sensing behaviour of a pyrrole-based derivative (2-hydroxyl 3 methyl 6 isopropyl benzaldehyde}-3,4-dimethyl-1H-pyrrole-2-carbohydrazide (receptor 3) has been explored and is found to be selective towards Zn(2+) over a variety of tested cations. The receptor 3 has shown high selectivity and sensitivity towards Zn(2+) over the other alkali, alkaline earth and transition metal ions. In the presence of Zn(2+), absorption band of receptor 3 has shown the red shift.

View Article and Find Full Text PDF