Publications by authors named "J Ryckeboer"

The significance of fresh vegetable consumption on human nutrition and health is well recognized. Human infections with Escherichia coli O157:H7 and Salmonella enterica linked to fresh vegetable consumption have become a serious public health problem inflicting a heavy economic burden. The use of contaminated livestock wastes such as manure and manure slurry in crop production is believed to be one of the principal routes of fresh vegetable contamination with E.

View Article and Find Full Text PDF

Enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica have been implicated in several disease outbreaks linked to consumption of fresh vegetables. Both ruminant and non-ruminant animals carry EHEC and S. enterica in their gastrointestinal tracts and can shed the pathogens in the faecal matter both in symptomatic and asymptomatic states.

View Article and Find Full Text PDF

Addition of pesticide-primed soil containing adapted pesticide degrading bacteria to the biofilter matrix of on farm biopurification systems (BPS) which treat pesticide contaminated wastewater, has been recommended, in order to ensure rapid establishment of a pesticide degrading microbial community in BPS. However, uncertainties exist about the minimal soil inoculum density needed for successful bioaugmentation of BPS. Therefore, in this study, BPS microcosm experiments were initiated with different linuron primed soil inoculum densities ranging from 0.

View Article and Find Full Text PDF

On-farm biopurification systems (BPS) treat pesticide-contaminated wastewater of farms through biodegradation. Adding pesticide-primed soil has been shown to be beneficial for the establishment of pesticide-degrading populations in BPS. However, no data exist on the response of pesticide-degrading microbiota, either endogenous or introduced with pesticide-primed soil, when BPS are exposed to expected less favorable environmental conditions like cold periods, drought periods, and periods without a pesticide supply.

View Article and Find Full Text PDF

The effect of cabbage (Brassica oleracea) rhizosphere on survival of Escherichia coli O157:H7 and Salmonella Typhimurium in manure-amended soils under tropical field conditions was investigated in the Central Agro-Ecological Zone of Uganda. Three-week old cabbage seedlings were transplanted and cultivated for 120 days on manure-amended soil inoculated with 4 or 7 log CFU/g non-virulent E. coli O157:H7 and S.

View Article and Find Full Text PDF