Publications by authors named "J Ryan Zimmerling"

Relatively high mortality of migratory bats at wind energy facilities has prompted research to understand the underlying spatial and temporal factors, with the goal of developing more effective mitigation approaches. We examined acoustic recordings of echolocation calls at 12 sites and post-construction carcass survey data collected at 10 wind energy facilities in Ontario, Canada, to quantify the degree to which timing and regional-scale weather predict bat activity and mortality. Rain and low temperatures consistently predicted low mortality and activity of big brown bats () and three species of migratory tree bats: hoary bat (), eastern red bat (), and silver-haired bat ().

View Article and Find Full Text PDF

Four phenylacetaldehyde dehydrogenases (designated as FeaB or StyD) originating from styrene-degrading soil bacteria were biochemically investigated. In this study, we focused on the Michaelis-Menten kinetics towards the presumed native substrate phenylacetaldehyde and the obviously preferred co-substrate NAD. Furthermore, the substrate specificity on four substituted phenylacetaldehydes and the co-substrate preference were studied.

View Article and Find Full Text PDF

Determining the electromagnetic field response of photonic and plasmonic resonators is a formidable task in general. Field expansions in terms of quasi-normal modes (QNMs) are often used, since only a few of these modes are typically required for an accurate field description. We show that by exploiting the structure of Maxwell's equations, conjugate-symmetric frequency-domain field expansions can be efficiently computed via a Lanczos-type algorithm.

View Article and Find Full Text PDF

Renewable energy sources, such as wind energy, are essential tools for reducing the causes of climate change, but wind turbines can pose a collision risk for bats. To date, the population-level effects of wind-related mortality have been estimated for only 1 bat species. To estimate temporal trends in bat abundance, we considered wind turbines as opportunistic sampling tools for flying bats (analogous to fishing nets), where catch per unit effort (carcass abundance per monitored turbine) is a proxy for aerial abundance of bats, after accounting for seasonal variation in activity.

View Article and Find Full Text PDF

Roads are one of the most widespread human-caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget.

View Article and Find Full Text PDF