Publications by authors named "J Ryan Petrulli"

Background: [C]-Erlotinib is a radiolabeled analogue of a tyrosine kinase inhibitor used to treat non-small cell lung cancer (NSCLC) which expresses specific kinase domain mutations of the epidermal growth factor receptor (EGFR). In this study, 10 subjects with NSCLC and assorted EGFR mutation status underwent a dynamic, multi-bed positron emission tomography (PET) scan using [C]-erlotinib. Data were analyzed using a variety of quantitative techniques common in PET (graphical methods, kinetic models, and uptake value-based endpoints).

View Article and Find Full Text PDF

Changes in the mesolimbic dopamine (DA) system are implicated in a range of neuropsychiatric conditions including addiction, depression and schizophrenia. Dysfunction of the neuroimmune system is often comorbid with such conditions and affects similar areas of the brain. The goal of this study was to use positron emission tomography with the dopamine D antagonist tracer, C-raclopride, to explore the effect of acute immune activation on striatal DA levels.

View Article and Find Full Text PDF

Introduction: Erlotinib is a tyrosine kinase inhibitor prescribed for non-small cell lung cancer (NSCLC) patients bearing epidermal growth factor receptor mutations in the kinase domain. The objectives of this study were to (1) establish a human dosimetry profile of [C]erlotinib and (2) assess the consistency of calculated equivalent dose across species using the same dosimetry model.

Methods: Subjects examined in this multi-species study included: a stage IIIa NSCLC patient, 3 rhesus macaque monkeys, a landrace pig, and 4 athymic nude-Fox1nu mice.

View Article and Find Full Text PDF

Positron Emission Tomography (PET) (and the related Single Photon Emission Computed Tomography) is a powerful imaging tool with a molecular specificity and sensitivity that are unique among imaging modalities. PET excels in the study of neurochemistry in three ways: 1) It can detect and quantify neuroreceptor molecules; 2) it can detect and quantify changes in neurotransmitters; and 3) it can detect and quantify exogenous drugs delivered to the brain. To carry out any of these applications, the user must harness the power of kinetic modeling.

View Article and Find Full Text PDF

Activating mutations of the epidermal growth factor receptor (EGFR) occur in multiple tumor types, including non-small cell lung cancer (NSCLC) and malignant glioma, and have become targets for therapeutic intervention. The determination of EGFR mutation status using a noninvasive, molecular imaging approach has the potential for clinical utility. In this study, we investigated [(11)C]-erlotinib positron emission tomography (PET) imaging as a tool to identify activating mutations of EGFR in both glioma and NSCLC xenografts.

View Article and Find Full Text PDF