Fruits are susceptible to ethylene ripening and microbial infestation, which can lead to spoilage and further significant economic losses. Thus, using functional preservation materials is an effective controlling technology to improve the post-harvest quality and extend the shelf life of fruits. Hence, a dual-function cellulose-based paper with exceptional antibacterial efficiency, favourable ethylene removal performance, improved mechanical and hydrophobic properties was prepared by covalently grafted antibacterial guanidine salt and surface-modified ethylene scavenger.
View Article and Find Full Text PDFDynamic therapies such as photodynamic therapy (PDT) and sonodynamic therapy (SDT) have potential in cancer treatment. Microalgae have attracted increasing attention because of their high active mobility, flexibility in terms of functionality, and good biocompatibility. In this study, surface-engineered microalgae Chlorella vulgaris (Chl) modified with metal‒organic framework (MOF) nanoparticles (denoted Chl-MOF) are successfully developed for synergistic photo-sonodynamic therapy and immunotherapy.
View Article and Find Full Text PDFChildhood overweight and obesity has become a severe public health concern worldwide including in China. Previous research has found that exposure to food-related information via digital media may predict unhealthy food consumption through one's attitudes and perceived social norms. However, food choice can also be a process of automaticity.
View Article and Find Full Text PDFThe choice of suitable materials and effective structural design are crucial in influencing the therapeutic outcomes of bone tissue engineering scaffolds. This study introduces a controllable biodegradable composite scaffold composed of flat silkworm cocoon (FSC) and polylactic acid (PLA) as an innovative strategy for promoting bone healing in complex injuries. We focused on optimizing the scaffold's structural design, mechanical properties, and underlying mechanisms of osteogenesis.
View Article and Find Full Text PDFBackground: Many patients with brachial plexus avulsion (BPA) suffer from neuropathic pain, but the mechanism remains elusive. Modifications of histones, the proteins responsible for organizing DNA, may play an important role in neuropathic pain. Lysine demethylase 4A (KDM4A), an essential component of histone demethylase, can modify the function of chromatin and thus regulate the vital gene expressions.
View Article and Find Full Text PDF