Nucleic Acid Nanocapsules (NANs) are nucleic acid nanostructures that radially display oligonucleotides on the surface of cross-linked surfactant micelles. Their chemical makeup affords the stimuli-responsive release of therapeutically active DNA-surfactant conjugates into the cells. While NANs have so far demonstrated the effective cytosolic delivery of their nucleic acid cargo, as seen indirectly by their gene regulation capabilities, there remain gaps in the molecular understanding of how this process happens.
View Article and Find Full Text PDFNucleic acid nanocapsules (NANs) are enzyme-responsive DNA-functionalized micelles built for the controlled release of DNA-surfactant conjugates (DSCs) that present sequences with demonstrated therapeutic potential. Here, we investigate the mechanisms by which DSCs gain access to intracellular space and determine the effects of serum on the overall uptake and internalization mechanism of NANs. Using pharmacological inhibitors to selectively block certain pathways, we show, through confocal visualization of cellular distribution and flow cytometry quantification of total cellular association, that scavenger receptor-mediated, caveolae-dependent endocytosis is the major cellular uptake pathway of NANs in the presence and absence of serum.
View Article and Find Full Text PDFIntracellular zinc ions are essential for various biological cell processes and are often dysregulated in many diseases de-pending on their location, protein binding affinity, and concentration in the cell. Due to their prevalence in diseases, it is important to not only effectively sense but chelate the often excess amount of zinc in a cell to alleviate further disease progression. N, N, N', N'-tetrakis (2-pyridinylmethyl)-1,2-ethanediamine (TPEN) is a selective zinc chelator but its water-insoluble nature and general cytotoxicity limit its therapeutic potential.
View Article and Find Full Text PDFTrends Biotechnol
March 2023
The unprecedented rapid deployment of mRNA vaccines against COVID-19 can be traced back to the early studies of RNA nanocarriers, including the study by Zimmermann et al. which showcased the effectiveness of RNA nanocarriers in vivo. This study, among others, ultimately resulted in Onpattro, the first FDA-approved RNA formulation.
View Article and Find Full Text PDFControllable release of multiple distinct cargoes from a nanomaterial is crucial to a variety of therapeutic and catalytic applications. In this study, we describe a DNA functionalized multi-layered surface crosslinked micelle (mlSCM) consisting of individually degradable layers. The DNA modified mlSCM has the ability to encapsulate separate small molecule cargo in distinct compartments within the nanocapsule, separated by chemical crosslinkers.
View Article and Find Full Text PDF