Publications by authors named "J Roosenboom"

The contribution of low-frequency variants to the genetic architecture of normal-range facial traits is unknown. We studied the influence of low-frequency coding variants (MAF < 1%) in 8091 genes on multi-dimensional facial shape phenotypes in a European cohort of 2329 healthy individuals. Using three-dimensional images, we partitioned the full face into 31 hierarchically arranged segments to model facial morphology at multiple levels, and generated multi-dimensional phenotypes representing the shape variation within each segment.

View Article and Find Full Text PDF

The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multivariate genome-wide association study meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated actions of variants.

View Article and Find Full Text PDF

Background: Cartilage oligomeric matrix protein (COMP) is an important extracellular matrix protein primarily functioning in the musculoskeletal tissues and especially endochondral bone growth. Mutations in COMP cause the skeletal dysplasia pseudoachondroplasia (PSACH) that is characterized by short limbs and fingers, joint laxity, and abnormalities but a striking lack of skull and facial abnormalities.

Methods: This study examined both mice and humans to determine how mutant-COMP affects face and skull growth.

View Article and Find Full Text PDF

There is ample evidence from heritability studies, genetic syndromes and experimental animal models that facial morphology is strongly influenced by genes. In this brief review, we present an up-to-date overview of the efforts to identify genes associated with the size and shape of human facial features. We discuss recent methodological advances that have led to breakthroughs, but also the multitude of challenges facing the field.

View Article and Find Full Text PDF

Orofacial clefting is one of the most prevalent craniofacial malformations. Previous research has demonstrated that unaffected relatives of patients with non-syndromic cleft lip with/without cleft palate (NSCL/P) show distinctive facial features, which can be an expression of underlying NSCL/P susceptibility genes. These results support the hypothesis that genes involved in the occurrence of a cleft also play a role in normal craniofacial development.

View Article and Find Full Text PDF