Inflammatory bowel diseases (IBD) are complex chronic inflammatory disorders of the gastrointestinal (GI) tract. Recent evidence suggests that the gut-brain axis may be pivotal in gastrointestinal and neurological diseases, especially IBD. Here, we present the first proof of concept for a microfluidic technology to model bilateral neuro-immunological communication.
View Article and Find Full Text PDFThere is an urgent need for predictive in vitro models to improve disease modeling and drug target identification and validation, especially for neurological disorders. Cerebral organoids, as alternative methods to in vivo studies, appear now as powerful tools to decipher complex biological processes thanks to their ability to recapitulate many features of the human brain. Combining these innovative models with microfluidic technologies, referred to as brain organoids-on-chips, allows us to model the microenvironment of several neuronal cell types in 3D.
View Article and Find Full Text PDFThe in vitro modeling of human brain connectomes is key to exploring the structure-function relationship of the central nervous system. Elucidating this intricate relationship will allow better studying of the pathological mechanisms of neurodegeneration and hence result in improved drug screenings for complex neurological disorders, such as Alzheimer's and Parkinson diseases. However, currently used in vitro modeling technologies lack the potential to mimic physiologically relevant neural structures.
View Article and Find Full Text PDFPediatric high-grade gliomas (pHGG) represent childhood and adolescent brain cancers that carry a rapid dismal prognosis. Since there is a need to overcome the resistance to current treatments and find a new way of cure, modeling the disease as close as possible in an in vitro setting to test new drugs and therapeutic procedures is highly demanding. Studying their fundamental pathobiological processes, including glutamatergic neuron hyperexcitability, will be a real advance in understanding interactions between the environmental brain and pHGG cells.
View Article and Find Full Text PDFHuman mini-brains (MB) are cerebral organoids that recapitulate in part the complexity of the human brain in a unique three-dimensional in vitro model, yielding discrete brain regions reminiscent of the cerebral cortex. Specific proteins linked to neurodegenerative disorders are physiologically expressed in MBs, such as APP-derived amyloids (Aβ), whose physiological and pathological roles and interactions with other proteins are not well established in humans. Here, we demonstrate that neuroectodermal organoids can be used to study the Aβ accumulation implicated in Alzheimer's disease (AD).
View Article and Find Full Text PDF