Contagious diseases are a major threat to societies in which individuals live in close contact. Social insects have evolved collective defense behaviors, such as social care or isolation of infected workers, that prevent outbreaks of pathogens. It has thus been suggested that individual immunity is reduced in species with such 'social immunity'.
View Article and Find Full Text PDFSocial insects have the highest rates of meiotic recombination among Metazoa, but there is considerable variation within the Hymenoptera. We synthesize the literature to investigate several hypotheses for these elevated recombination rates. We reexamine the long-standing Red Queen hypothesis, considering how social aspects of immunity could lead to increases in recombination.
View Article and Find Full Text PDFGynodioecy, the coexistence of hermaphrodites with females, often reflects conflicts between cytoplasmic male sterility (CMS) genes and nuclear genes restoring male fertility. CMS is frequent in plants and has been recently discovered in one animal: the freshwater snail, Physa acuta. In this system, CMS was linked to a single divergent mitochondrial genome (D), devoid of apparent nuclear restoration.
View Article and Find Full Text PDFThe evolution of eusociality has allowed ants to become one of the most conspicuous and ecologically dominant groups of organisms in the world. A large majority of the current ∼14,000 ant species belong to the formicoids, a clade of nine subfamilies that exhibit the most extreme forms of reproductive division of labor, large colony size, worker polymorphism, and extended queen longevity. The eight remaining non-formicoid subfamilies are less well studied, with few genomes having been sequenced so far and unclear phylogenetic relationships.
View Article and Find Full Text PDF