In this paper, we present an apparatus for studies into the photodetachment process of atomic negative ions. State-selective detection of the residual atom following the initial photodetachment step is achieved by combining resonant laser excitation of the photo-detached atom with electric field ionization. The resonance ionization technique in combination with a co-linear ion-laser beam geometry gives an experimental apparatus that has both high selectivity and sensitivity.
View Article and Find Full Text PDFA scheme is presented for pulsing of a cesium sputter negative ion source by periodically switching on and off the high voltage driving the sputtering process. We demonstrate how the pulsed ion beam can be used in combination with a pulsed laser (6 ns pulse length) that has a 10 Hz repetition rate to study the photodetachment process, where a negative ion is neutralized due to the absorption of a photon. In such experiments, where the ion beam is used only for a small fraction of the time, we show that the pulsed mode operation can increase the lifetime of a cathode by two orders of magnitude as compared with DC operation.
View Article and Find Full Text PDFDespite the tremendous advances in laser cooling of neutral atoms and positive ions, no negatively charged ion has been directly laser cooled. The negative ion of lanthanum, La(-), has been proposed as the best candidate for laser cooling of any atomic anion [ and , Phys. Rev.
View Article and Find Full Text PDFHigh resolution electron kinetic energy spectra of iron pentacarbonyl (Fe(CO)5) are studied in the photon energy range of 40-90 eV. The relative yield of photolines associated with the Fe 3d level shows a Fano line shape at photon energies of 61 eV. The increase in signal from the 3d level is indicative of resonant photoemission involving 3p-3d transitions at the M edge of iron.
View Article and Find Full Text PDFNew techniques for suppression of atomic isobars in negative ion beams are of great interest for accelerator mass spectrometry (AMS). Especially small and medium-sized facilities can significantly extend their measurement capabilities to new interesting isotopes with a technique independent of terminal voltage. In a new approach, the effect of continuous wave laser light directed towards the cathode surface in a cesium sputter ion source of the Middleton type was studied.
View Article and Find Full Text PDF