Chronic hepatitis B virus (HBV) infection remains a global health problem due to the lack of treatments that prevent viral rebound from HBV covalently closed circular (ccc)DNA. In addition, HBV DNA integrates in the human genome, serving as a source of hepatitis B surface antigen (HBsAg) expression, which impairs anti-HBV immune responses. Cytosine base editors (CBEs) enable precise conversion of a cytosine into a thymine within DNA.
View Article and Find Full Text PDFmRNA therapeutics hold promise for the treatment of diseases requiring intracellular protein expression and for use in genome editing systems, but mRNA must transfect the desired tissue and cell type to be efficacious. Nanoparticle vectors that deliver the mRNA are often evaluated using mRNA encoding for reporter genes such as firefly luciferase (FLuc); however, single-cell resolution of mRNA expression cannot generally be achieved with FLuc, and, thus, the transfected cell populations cannot be determined without additional steps or experiments. To more rapidly identify which types of cells an mRNA formulation transfects in vivo, we describe a Cre recombinase (Cre)-based system that permanently expresses fluorescent tdTomato protein in transfected cells of genetically modified mice.
View Article and Find Full Text PDFB lymphocytes regulate several aspects of immunity including antibody production, cytokine secretion, and T-cell activation; moreover, B cell misregulation is implicated in autoimmune disorders and cancers such as multiple sclerosis and non-Hodgkin's lymphomas. The delivery of messenger RNA (mRNA) into B cells can be used to modulate and study these biological functions by means of inducing functional protein expression in a dose-dependent and time-controlled manner. However, current in vivo mRNA delivery systems fail to transfect B lymphocytes and instead primarily target hepatocytes and dendritic cells.
View Article and Find Full Text PDFThe induction of a strong cytotoxic T cell response is an important prerequisite for successful immunotherapy against many viral diseases and tumors. Nucleotide vaccines, including mRNA vaccines with their intracellular antigen synthesis, have been shown to be potent activators of a cytotoxic immune response. The intracellular delivery of mRNA vaccines to the cytosol of antigen presenting immune cells is still not sufficiently well understood.
View Article and Find Full Text PDFBiomater Sci
December 2016
Delivery is the key challenge for siRNA based therapeutics. Here, we report the development of new poly(glycoamidoamine) brush nanomaterials for efficient siRNA delivery. GluN4C10 polymer brush nanoparticles, a lead material, demonstrated significantly improved delivery efficiency for siRNA against factor VII (FVII) in mice compared to poly(glycoamidoamine) brush nanomaterials reported previously.
View Article and Find Full Text PDF