Background: Dark-field radiography imaging exploits the wave character of x-rays to measure small-angle scattering on material interfaces, providing structural information with low radiation exposure. We explored the potential of dark-field imaging of bone microstructure to improve the assessment of bone strength in osteoporosis.
Methods: We prospectively examined 14 osteoporotic/osteopenic and 21 non-osteoporotic/osteopenic human cadaveric vertebrae (L2-L4) with a clinical dark-field radiography system, micro-computed tomography (CT), and spectral CT.
Purpose: To assess the diagnostic performance of three-dimensional (3D) CT-based texture features (TFs) using a convolutional neural network (CNN)-based framework to differentiate benign (osteoporotic) and malignant vertebral fractures (VFs).
Methods: A total of 409 patients who underwent routine thoracolumbar spine CT at two institutions were included. VFs were categorized as benign or malignant using either biopsy or imaging follow-up of at least three months as standard of reference.
Opportunistic osteoporosis screening using multidetector CT-scans (MDCT) and convolutional neural network (CNN)-derived segmentations of the spine to generate volumetric bone mineral density (vBMD) bears the potential to improve incidental osteoporotic vertebral fracture (VF) prediction. However, the performance compared to the established manual opportunistic vBMD measures remains unclear. Hence, we investigated patients with a routine MDCT of the spine who had developed a new osteoporotic incidental VF and frequency matched to patients without incidental VFs as assessed on follow-up MDCT images after 1.
View Article and Find Full Text PDFBackground: The aim of this study was to develop and validate radiogenomic models to predict the MDM2 gene amplification status and differentiate between ALTs and lipomas on preoperative MR images.
Methods: MR images were obtained in 257 patients diagnosed with ALTs ( = 65) or lipomas ( = 192) using histology and the MDM2 gene analysis as a reference standard. The protocols included T2-, T1-, and fat-suppressed contrast-enhanced T1-weighted sequences.
Haematologica
April 2019
Thromboembolism is a serious complication of induction therapy for childhood acute lymphoblastic leukemia. We prospectively compared the efficacy and safety of antithrombotic interventions in the consecutive leukemia trials ALL-BFM 2000 and AIEOP-BFM ALL 2009. Patients with newly diagnosed acute lymphoblastic leukemia (n=949, age 1 to 18 years) were randomized to receive low-dose unfractionated heparin, prophylactic low molecular weight heparin (enoxaparin) or activity-adapted antithrombin throughout induction therapy.
View Article and Find Full Text PDF