Publications by authors named "J Riemer"

The NADPH/NADP redox couple is central to metabolism and redox signalling. NADP redox state is differentially regulated by distinct enzymatic machineries at the subcellular compartment level. Nonetheless, a detailed understanding of subcellular NADP redox dynamics is limited by the availability of appropriate tools.

View Article and Find Full Text PDF
Article Synopsis
  • - T-cell receptor (TCR) activation leads to increased calcium (Ca) uptake in mitochondria of human CD4 T-cells, which is critical for T-cell activation and energy production.
  • - Effector T-cells show higher levels of Ca and enhanced metabolic activity compared to naive T-cells, influenced by the mitochondrial calcium uniporter (MCU) complex.
  • - Reducing MCUa function decreases Ca uptake, mitochondrial respiration, and important T-cell activities like migration and cytokine secretion, suggesting that MCU inhibition could help manage autoimmune diseases.
View Article and Find Full Text PDF

The mitochondrial disulphide relay machinery is essential for the import and oxidative folding of many proteins in the mitochondrial intermembrane space. Its core component, the import receptor MIA40 (also CHCHD4), serves as an oxidoreductase but also as a chaperone holdase, which initially interacts with its substrates non-covalently before introducing disulphide bonds for folding and retaining proteins in the intermembrane space. Interactome studies have identified diverse substrates of MIA40, among them the intrinsically disordered HCLS1-associated protein X-1 (HAX1).

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is an important biological molecule, functioning both as a second messenger in cell signaling and, especially at higher concentrations, as a cause of cell damage. Cells harbor multiple enzymes that have peroxide reducing activity in vitro. However, the contribution of each of these enzymes towards peroxide scavenging in vivo is less clear.

View Article and Find Full Text PDF

Oxidation of cysteine residues in proteins can take place as part of an enzymatic reaction cycle, during oxidative protein folding or as a consequence of redox signalling or oxidative stress. Following changes in protein thiol redox states allows to investigate the mechanisms underlying thiol-disulphide redox processes. In this book chapter, we provide information and protocols on different methods for redox state determination with a focus on these processes in the context of oxidation-dependent protein import into the mitochondrial intermembrane space.

View Article and Find Full Text PDF