Collectively coordinated ciliary activity propels the airway mucus, which lines the luminal surface of the vertebrate respiratory system, in cranial direction. Our contemporary understanding on how the quantitative characteristics of the metachronal wave field determines the resulting mucociliary transport is still limited, partly due to the sparse availability of quantitative observational data. We employed high-speed video reflection microscopy to image and quantitatively characterize the metachronal wave field as well as the mucociliary transport in excised bovine, porcine, ovine, lapine, turkey and ostrich samples.
View Article and Find Full Text PDFThe tracheobronchial tree is lined by a mucociliary epithelium containing millions of multiciliated cells. Their integrated oscillatory activity continuously propels an overlying pollution-protecting mucus layer in cranial direction, leading to mucociliary clearance - the primary defence mechanism of the airways. Mucociliary transport is commonly thought to co-emerge with the collective ciliary motion pattern under appropriate geometrical and rheological conditions.
View Article and Find Full Text PDFThe observed spatiotemporal ciliary beat patterns leading to proper mucociliary clearance on multiciliated epithelia are suspected to be the result of self-organizing processes on various levels. Here, we present a simplified pluricellular epithelium model, which intends to make the self-organization of ciliary beating patterns as well as of the associated fluid transport across the airway epithelium plausible. The model is based on a two-dimensional array of locally interacting oscillating ciliated cells.
View Article and Find Full Text PDFPneumonia is a common complication of boid inclusion body disease (BIBD) in snakes. The tracheal mucociliary apparatus of eight boas ( Boa constrictor) and two pythons ( Python regius, Morelia viridis) was examined to assess whether absent or reduced mucociliary clearance could be a predisposing factor. Nine of the examined snakes were positive for BIBD by detection of inclusion bodies and three had lung pathologies other than the formation of inclusion bodies.
View Article and Find Full Text PDFWater keeps puzzling scientists because of its numerous properties which behave oppositely to those of usual liquids: for instance, water expands upon cooling, and liquid water is denser than ice. To explain this anomalous behavior, several theories have been proposed, with different predictions for the properties of supercooled water (liquid at conditions where ice is stable). However, discriminating between those theories with experiments has remained elusive because of spontaneous ice nucleation.
View Article and Find Full Text PDF