The recent implementation of attosecond and few-femtosecond X-ray pump/X-ray probe schemes in large-scale free-electron laser facilities has opened the way to visualize fast nuclear dynamics in molecules with unprecedented temporal and spatial resolution. Here, we present the results of theoretical calculations showing how polarization-averaged molecular-frame photoelectron angular distributions (PA-MFPADs) can be used to visualize the dynamics of hydrogen migration in methanol, ethanol, propanol, and isopropyl alcohol dications generated by X-ray irradiation of the corresponding neutral species. We show that changes in the PA-MFPADs with the pump-probe delay as a result of intramolecular photoelectron diffraction carry information on the dynamics of hydrogen migration in real space.
View Article and Find Full Text PDFUpon photoexcitation, molecules can undergo numerous complex processes, such as isomerization and roaming, leading to changes in the molecular and electronic structure. Here, we report on the time-resolved ultrafast nuclear dynamics, initiated by laser ionization, in the two structural isomers, 1- and 2-propanol, using a combination of pump-probe spectroscopy and coincident Coulomb explosion imaging. Our measurements, paired with quantum chemistry calculations, identify the mechanisms for the observed two- and three-body dissociation channels for both isomers.
View Article and Find Full Text PDFIsomerization induced by laser ionization in acetonitrile (CHCN) was investigated using pump-probe spectroscopy in combination with ion-ion coincident Coulomb explosion imaging. We deduced five primary channels indicating direct C-C breakup, single and double hydrogen migration, and H and H dissociation in the acetonitrile cation. Surprisingly, the hydrogen-migration channels dominate over direct fragmentation.
View Article and Find Full Text PDF