Optical polarizers encompass a class of anisotropic materials that pass-through discrete orientations of light and are found in wide-ranging technologies, from windows and glasses to cameras, digital displays and photonic devices. The wire-grids, ordered surfaces, and aligned nanomaterials used to make polarized films cannot be easily reconfigured once aligned, limiting their use to stationary cross-polarizers in, for example, liquid crystal displays. Here we describe a supramolecular material set and patterning approach where the polarization angle in stand-alone films can be precisely defined at the single pixel level and reconfigured following initial alignment.
View Article and Find Full Text PDFCharge-transfer materials based on the self-assembly of aromatic donor-acceptor complexes enable a modular organic-synthetic approach to develop and fine-tune electronic and optical properties, and thus these material systems stand to impact a wide range of technologies. Through laser-induction of temperature gradients, in this study, user-defined patterning of strongly dichroic and piezoelectric organic thin films composed of donor-acceptor columnar liquid crystals is shown. Fine, reversible control over isotropic versus anisotropic regions in thin films is demonstrated, enabling noncontact writing/rewriting of micropolarizers, bar codes, and charge-transfer based devices.
View Article and Find Full Text PDFThe formation of highly anisotropic organic thin films based on the designed self-assembly of mixed-stack liquid crystals is reported. A series of alkoxyanthracene donors is combined in a modular fashion with a naphthalenediimide acceptor to generate new charge-transfer columnar liquid crystals. Materials characterization and molecular modeling provides insight into structure-function relationships in these organic materials that lead to the striking bulk dichroic properties of certain molecular assemblies.
View Article and Find Full Text PDFDeep inspiration breath hold (DIBH) is an effective technique to reduce cardiac and pulmonary dose during breast radiotherapy (RT). However, as a result of expense and the technical challenges of program implementation, DIBH has not been widely adopted in clinical practice. This report describes a program for DIBH this is relatively inexpensive to implement and has little impact on patient throughput.
View Article and Find Full Text PDFMolar mixtures (1:1) of electron-rich dialkoxynapthalene (Dan) and electron-deficient 1,4,5,8-napthalenetetracarboxylic diimide (Ndi) derivatives form highly tunable, columnar mesophases with a dark red color due to a charge transfer absorbance derived from alternating face-centered stacking. Certain Dan-Ndi mixtures undergo a dramatic color change from dark red to an almost colorless material upon crystallizing from the mesophase. Macroscopic morphology of the solid is not changed during this process.
View Article and Find Full Text PDF