TOPAS-nBio enables users to simulate dose rate-dependent radiation chemical yields in water radiolysis accounting for inter-track and long-term chemistry for pulsed irradiation. This study aims to extend the TOPAS-nBio chemistry for the special case of continuous high-dose rate scenario, where both intertrack and longer time reactions need to be considered, and to quantitatively validate the extended framework by comparing the results with experimental data.The inter-track chemistry and escape-values were first evaluated by the independent reaction time method.
View Article and Find Full Text PDFThe radiobiological mechanisms behind the favorable response of tissues to microbeam radiation therapy (MRT) are not fully described yet. Among other factors, the differential action to tumor and normal tissue vasculature is considered to contribute to MRT efficacy. This computational study evaluates the relevance of tumor growth stage and associated vascular redistribution to this effect.
View Article and Find Full Text PDFAnimals (Basel)
October 2024
The aim of this study was to evaluate growth performance, dietary energy utilization, and carcass characteristics (carcass weight, dressing percentage, and visceral organ mass) of feedlot lambs fed different levels of AZOMITE (AZO), a source of volcanic clay composed of hydrated sodium calcium aluminosilicate, the same as that included in a finishing diet. For this reason, 36 Pelibuey × Katahdin crossbred intact male lambs (18.81 ± 3.
View Article and Find Full Text PDFTo present and validate a method to simulate from first principles the effect of oxygen on radiation-induced double-strand breaks (DSBs) using the Monte Carlo Track-structure code TOPAS-nBio.Two chemical models based on the oxygen fixation hypothesis (OFH) were developed in TOPAS-nBio by considering an oxygen adduct state of DNA and creating a competition kinetic mechanism between oxygen and the radioprotective molecule WR-1065. We named these models 'simple' and 'detailed' due to the way they handle the hydrogen abstraction pathways.
View Article and Find Full Text PDFThis work aims to develop and validate a framework for the multiscale simulation of the biological response to ionizing radiation in a population of cells forming a tissue. We present TOPAS-Tissue, a framework to allow coupling two Monte Carlo (MC) codes: TOPAS with the TOPAS-nBio extension, capable of handling the track-structure simulation and subsequent chemistry, and CompuCell3D, an agent-based model simulator for biological and environmental behavior of a population of cells. We verified the implementation by simulating the experimental conditions for a clonogenic survival assay of a 2-D PC-3 cell culture model (10 cells in 10,000 µm) irradiated by MV X-rays at several absorbed dose values from 0-8 Gy.
View Article and Find Full Text PDF