Appl Microbiol Biotechnol
March 2007
By-product emissions from ethanol production facilities have become a public health concern. Many of these by-products are classified as hazardous air pollutants by the USEPA and current treatment methods, mainly thermal-oxidation, for these compounds are costly, energy intensive, and may produce other undesirable by-products. Degradation of these by-products by the fungi Exophiala lecanii-corni and Saccharomyces cerevisiae was explored.
View Article and Find Full Text PDFEnviron Sci Technol
September 2006
Proton, Cd, Pb, Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae were measured in bulk adsorption experiments as a function of time, pH, surface: metal ratio, and ionic strength, and we measured the electrophoretic mobility of the cells as a function of pH. We modeled the acid/base properties of the fungal cell wall by invoking a nonelectrostatic surface complexation model with four discrete surface organic acid functional group types, with average pKa values (with 1 sigma uncertainties) of 3.4 +/- 0.
View Article and Find Full Text PDFThe effects of relative humidity, temperature, pH and vapor-phase toluene concentration on Tyrophagus putrescentiae growth on Cladophialophora sp. were tested in controlled environmental chambers. It was observed that the mites were able to reproduce readily at relative humidities between 90% and 97% as well as on porous perlite support material pre-soaked in nutrient media of pH 2.
View Article and Find Full Text PDFRecent studies have focused on using vapor-phase bioreactors for the treatment of volatile organic compounds from contaminated air streams. Although high removal capacities have been achieved in many studies, long-term operation is often unstable at high pollutant loadings due to biomass accumulation and drying of the packing medium. In this study, three bench-scale bioreactors were operated to determine the effect of packing material and fungal predation on toluene removal efficiency and pressure drop.
View Article and Find Full Text PDFStricter regulations on volatile organic compounds and hazardous air pollutants have increased the demand for abatement technologies. Biofiltration, a process in which contaminated air is passed through a biologically active bed, can be used to remove these pollutants from air streams. In this study, a fungal vapor-phase bioreactor containing a strain of the dimorphic black yeast, Exophiala lecanii-corni, was used to treat a gas stream contaminated with toluene.
View Article and Find Full Text PDF