Publications by authors named "J R Strehlow"

We present a reduced-order model to calculate response matrices rapidly for filter stack spectrometers (FSSs). The reduced-order model allows response matrices to be built modularly from a set of pre-computed photon and electron transport and scattering calculations through various filter and detector materials. While these modular response matrices are not appropriate for high-fidelity analysis of experimental data, they encode sufficient physics to be used as a forward model in design optimization studies of FSSs, particularly for machine learning approaches that require sampling and testing a large number of FSS designs.

View Article and Find Full Text PDF

We present an inversion method capable of robustly unfolding MeV x-ray spectra from filter stack spectrometer (FSS) data without requiring an a priori specification of a spectral shape or arbitrary termination of the algorithm. Our inversion method is based upon the perturbative minimization (PM) algorithm, which has previously been shown to be capable of unfolding x-ray transmission data, albeit for a limited regime in which the x-ray mass attenuation coefficient of the filter material increases monotonically with x-ray energy. Our inversion method improves upon the PM algorithm through regular smoothing of the candidate spectrum and by adding stochasticity to the search.

View Article and Find Full Text PDF

The interaction of an intense laser with a solid foil target can drive [Formula: see text] TV/m electric fields, accelerating ions to MeV energies. In this study, we experimentally observe that structured targets can dramatically enhance proton acceleration in the target normal sheath acceleration regime. At the Texas Petawatt Laser facility, we compared proton acceleration from a [Formula: see text] flat Ag foil, to a fixed microtube structure 3D printed on the front side of the same foil type.

View Article and Find Full Text PDF

The generation of hot, directional electrons via laser-driven stimulated Raman scattering (SRS) is a topic of great importance in inertial confinement fusion (ICF) schemes. Little recent research has been dedicated to this process at high laser intensity, in which back, side, and forward scatter simultaneously occur in high energy density plasmas, of relevance to, for example, shock ignition ICF. We present an experimental and particle-in-cell (PIC) investigation of hot electron production from SRS in the forward and near-forward directions from a single speckle laser of wavelength λ_{0}=1.

View Article and Find Full Text PDF

Structures on the front surface of thin foil targets for laser-driven ion acceleration have been proposed to increase the ion source maximum energy and conversion efficiency. While structures have been shown to significantly boost the proton acceleration from pulses of moderate-energy fluence, their performance on tightly focused and high-energy lasers remains unclear. Here, we report the results of laser-driven three-dimensional (3D)-printed microtube targets, focusing on their efficacy for ion acceleration.

View Article and Find Full Text PDF