Publications by authors named "J R Sedor"

Background: Focal segmental glomerulosclerosis (FSGS) and treatment-resistant minimal change disease (TR-MCD) are heterogeneous disorders with subgroups defined by distinct underlying mechanisms of glomerular and tubulointerstitial injury. A non-invasive urinary biomarker profile has been generated to identify patients with intra-kidney tumor necrosis factor (TNF)-activation and to predict response to anti-TNF treatment. We conducted this proof-of-concept, multi-center, open-label clinical trial to test the hypothesis that in patients with FSGS or TR-MCD and evidence of intra-renal TNF activation based on their biomarker profile, short-term treatment with adalimumab would reverse the elevated urinary excretion of MCP-1 and TIMP-1.

View Article and Find Full Text PDF

The maintenance of a healthy epithelial-endothelial juxtaposition requires cross-talk within glomerular cellular niches. We sought to understand the spatially-anchored regulation and transition of endothelial and mesangial cells from health to injury in DKD. From 74 human kidney samples, an integrated multi-omics approach was leveraged to identify cellular niches, cell-cell communication, cell injury trajectories, and regulatory transcription factor (TF) networks in glomerular capillary endothelial (EC-GC) and mesangial cells.

View Article and Find Full Text PDF

Introduction: Recent technological advancements allowed the development of engaging technological tools. Using ASN funding from the ASN, we developed a 3D Virtual Reality (VR) physiology course entitled DiAL-Neph (Diuretic Action and eLectrolyte transport in the Nephron). We hereby present its evaluation.

View Article and Find Full Text PDF
Article Synopsis
  • Lactate is a key indicator of mitochondrial dysfunction, and recent studies are exploring its significance in diabetic kidney disease (DKD), particularly in individuals with type 2 diabetes (T2D) and type 1 diabetes (T1D).
  • In cohorts of T2D patients (HUNT3, SMART2D, CRIC), higher urine lactate levels were linked to worse kidney function and faster declines in glomerular filtration rate; additionally, increased lactate levels were observed in T1D patients during glucose challenges.
  • The study suggests that elevated lactate, particularly in diabetic conditions, may inhibit important mitochondrial processes and contribute to the pathology of DKD, potentially through mechanisms
View Article and Find Full Text PDF

Background: Diabetes is expected to directly impact renal glycosylation, yet to date, there has not been a comprehensive evaluation of alterations in N-glycan composition in the glomeruli of patients with diabetic kidney disease (DKD).

Methods: We used untargeted mass spectrometry imaging to identify N-glycan structures in healthy and sclerotic glomeruli in FFPE sections from needle biopsies of five patients with DKD and three healthy kidney samples. Regional proteomics was performed on glomeruli from additional biopsies from the same patients to compare the abundances of enzymes involved in glycosylation.

View Article and Find Full Text PDF