Publications by authors named "J R Pluth"

Esophageal squamous cell carcinoma (ESCC) is a deadly consequence of radiation exposure to the esophagus. ESCC arises from esophageal epithelial cells that undergo malignant transformation and features a perturbed squamous cell differentiation program. Understanding the dose- and radiation quality-dependence of the esophageal epithelium response to radiation may provide insights into the ability of radiation to promote ESCC.

View Article and Find Full Text PDF

Pyridone-containing adenine dinucleotides, ox-NAD, are formed by overoxidation of nicotinamide adenine dinucleotide (NAD) and exist in three distinct isomeric forms. Like the canonical nucleosides, the corresponding pyridone-containing nucleosides (PYR) are chemically stable, biochemically versatile, and easily converted to nucleotides, di- and triphosphates, and dinucleotides. The 4-PYR isomer is often reported with its abundance increasing with the progression of metabolic diseases, age, cancer, and oxidative stress.

View Article and Find Full Text PDF
Article Synopsis
  • * This research utilized mouse mammary epithelial cells in both 2D and 3D cultures to study the effects of simulated microgravity on cellular characteristics and structure organization.
  • * Findings indicate that microgravity exposure leads to significant changes in cell size, DNA damage, and increased cancer risk related to alterations in stem cell populations within the mammary cells.
View Article and Find Full Text PDF

Double-strand breaks (DSB) are one of the most lethal forms of DNA damage that, if left unrepaired, can lead to genomic instability, cellular transformation, and cell death. In this work, we examined how repair of transcription activator-like effector nuclease (TALEN)-induced DNA damage was altered when knocking out, or inhibiting a function of, two DNA repair proteins, XRCC4 and MRE11, respectively. We developed a fluorescent reporter assay that uses TALENs to introduce DSB and detected repair by the presence of GFP fluorescence.

View Article and Find Full Text PDF

Purpose: Computed tomographic (CT) scans in adolescents have increased dramatically in recent years. However, the effects of cumulative low-dose exposures on the development of radiation sensitive organs, such as the mammary gland, is unknown. The purpose of this work was to define the effects of dose rate on mammary organ formation during puberty, an especially sensitive window in mammary development.

View Article and Find Full Text PDF