Publications by authors named "J R Morrongiello"

Many animals exhibit partial migration, which occurs when populations contain coexisting contingents of migratory and resident individuals. This individual-level variation in migration behaviour may drive differences in growth, age at maturity and survival. Therefore, partial migration is widely considered to play a key role in shaping population demography.

View Article and Find Full Text PDF

Large-scale, climate-induced synchrony in the productivity of fish populations is becoming more pronounced in the world's oceans. As synchrony increases, a population's "portfolio" of responses can be diminished, in turn reducing its resilience to strong perturbation. Here we argue that the costs and benefits of trait synchronization, such as the expression of growth rate, are context dependent.

View Article and Find Full Text PDF

Fish and other ectotherms living in warmer waters often grow faster as juveniles, mature earlier, but become smaller adults. Known as the temperature-size rule (TSR), this pattern is commonly attributed to higher metabolism in warmer waters, leaving fewer resources for growth. An alternative explanation focuses on growth and reproduction trade-offs across temperatures.

View Article and Find Full Text PDF

Fisheries and natural water resources across the world are under increasing pressure from human activity, including fishing and irrigated agriculture. There is an urgent need for information on the climatic/hydrologic drivers of fishery productivity that can be readily applied to management. We use a generalized linear mixed model framework of catch curve regression to resolve the key climatic/hydrological drivers of recruitment in Barramundi Lates calcarifer using biochronological (otolith aging) data collected from four river-estuary systems in the Northern Territory, Australia.

View Article and Find Full Text PDF

Marine fish populations commonly exhibit low-frequency fluctuations in biomass that can cause catch volatility and thus endanger the food and economic security of dependent coastal societies. Such variability has been linked to fishing intensity, demographic processes and environmental variability, but our understanding of the underlying drivers remains poor for most fish stocks. Our study departs from previous findings showing that sea surface temperature (SST) is a significant driver of fish somatic growth variability and that life-history characteristics mediate population-level responses to environmental variability.

View Article and Find Full Text PDF