High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFBackground: The National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD) is continuing to develop a bank of induced pluripotent stem cells (iPSCs) that are available by request to the Alzheimer's disease (AD) research community.
Methods: As part of the pipeline for quality control of received cell lines, DNA was extracted for all lines and was submitted for whole genome sequencing (WGS). Paired-end WGS data was generated using the Illumina NovaSeq 6000 and processed following GATK best practices using the Sentieon pipeline.
Background: Dysfunctional microglial activity has recently been identified as a potential mechanism leading to accumulation of amyloid beta and pTau and subsequent neurodegeneration in Alzheimer's Disease. The CX3CR1/fractalkine axis serves as a mechanism for bi-directional communication between microglia and neurons, respectively, to promote a resting, anti-inflammatory state in microglia. Previous studies have demonstrated that deficiency in CX3CR1 signaling leads microglia to a more pro-inflammatory phenotype, phagocytic deficits, and increased susceptibility of neurons to cell death.
View Article and Find Full Text PDF