Publications by authors named "J R Lumpp"

A self-contained ion-selective sensing system within a nanoliter-volume vial has been developed by integrating screen printing, laser ablation, and molecular imprinting techniques. Screen printing and laser ablation are used in tandem to fabricate nanoliter-volume vials with carbon and Ag/AgCl ring electrodes embedded in the sidewalls. Using multisweep cyclic voltammetry, the surface of the carbon electrode can be modified with a polypyrrole film.

View Article and Find Full Text PDF

We examined the ability of a novel spinal cord injury (SCI) device to produce graded morphological and behavioral changes in the adult rat following an injury at thoracic level 10 (T10). The injury device uses force applied to the tissue as the control variable rather than tissue displacement. This has the advantage of eliminating errors that may arise from tissue movement prior to injury.

View Article and Find Full Text PDF

Laser ablation arrays of triangular and square shaped clusters, comprised of 23 micrometers diam circular holes, are defined upon 100 nm thick Ni81Fe19 films used to control the rf permeability spectra. Cluster-to-cluster spacing is varied from 200 to 600 micrometers. For each geometry it is found that the loss peak frequency and permeability magnitude shift lower, in a step-wise fashion, at a cluster-to-cluster spacing between 275 and 300 micrometers.

View Article and Find Full Text PDF

The coupling of screen-printing and laser micromachining technology has been used to create a nanovial with "built-in" working and reference electrodes. The volume of the nanovial was calculated to be 7.2 nL using dimensions determined by SEM.

View Article and Find Full Text PDF

The quantitative determination of proteins in picoliter-volume vials is described. The assay is based on the bioluminescence of the photoprotein aequorin along with photon-counting detection. Using this approach, avidin can be detected at femtomole levels by taking advantage of its inhibitory effect on the bioluminescence signal generated by biotinylated recombinant aequorin.

View Article and Find Full Text PDF