Publications by authors named "J R Idol"

Article Synopsis
  • Up to 80% of SARS-CoV-2 infections are asymptomatic, but these individuals can still spread the virus, highlighting a need to understand why some people show symptoms while others do not.
  • This study analyzed viral genetic variants and transcript variations in samples from both symptomatic and asymptomatic patients using advanced genomic techniques.
  • Findings indicate that symptomatic infections have higher levels of specific viral RNA expressions and unique genetic deletions, suggesting a link between these factors and the severity of COVID-19, which could inform future treatment and vaccine strategies.
View Article and Find Full Text PDF

Identifying the molecular mechanisms by which genome-wide association study (GWAS) loci influence traits remains challenging. Chromatin accessibility quantitative trait loci (caQTLs) help identify GWAS loci that may alter GWAS traits by modulating chromatin structure, but caQTLs have been identified in a limited set of human tissues. Here we mapped caQTLs in human liver tissue in 20 liver samples and identified 3,123 caQTLs.

View Article and Find Full Text PDF

We integrate comeasured gene expression and DNA methylation (DNAme) in 265 human skeletal muscle biopsies from the FUSION study with >7 million genetic variants and eight physiological traits: height, waist, weight, waist-hip ratio, body mass index, fasting serum insulin, fasting plasma glucose, and type 2 diabetes. We find hundreds of genes and DNAme sites associated with fasting insulin, waist, and body mass index, as well as thousands of DNAme sites associated with gene expression (eQTM). We find that controlling for heterogeneity in tissue/muscle fiber type reduces the number of physiological trait associations, and that long-range eQTMs (>1 Mb) are reduced when controlling for tissue/muscle fiber type or latent factors.

View Article and Find Full Text PDF

Third generation single-molecule DNA sequencing technologies offer significantly longer read length that can facilitate the assembly of complex genomes and analysis of complex structural variants. Nanopore platforms perform single-molecule sequencing by directly measuring the current changes mediated by DNA passage through the pores and can generate hundreds of kilobase (kb) reads with minimal capital cost. This platform has been adopted by many researchers for a variety of applications.

View Article and Find Full Text PDF

Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury.

View Article and Find Full Text PDF