Publications by authors named "J R Glausier"

The aim of this study was to make unstructured neuropathological data, located in the NeuroBioBank (NBB), follow Findability, Accessibility, Interoperability, and Reusability principles and investigate the potential of large language models (LLMs) in wrangling unstructured neuropathological reports. By making the currently inconsistent and disparate data findable, our overarching goal was to enhance research output and speed. The NBB catalog currently includes information from medical records, interview results, and neuropathological reports.

View Article and Find Full Text PDF

The subgenual anterior cingulate cortex (sgACC) is a critical site for understanding the neural correlates of affect and emotion. While the activity of the sgACC is functionally homogenous, it is comprised of multiple Brodmann Areas (BAs) that possess different cytoarchitectures. In some sgACC BAs, Layer 5 is sublaminated into L5a and L5b which has implications for its projection targets.

View Article and Find Full Text PDF

Local protein synthesis in axons and dendrites underpins synaptic plasticity. However, the composition of the protein synthesis machinery in distal neuronal processes and the mechanisms for its activity-driven deployment to local translation sites remain unclear. Here, we employed cryo-electron tomography, volume electron microscopy, and live-cell imaging to identify Ribosome-Associated Vesicles (RAVs) as a dynamic platform for moving ribosomes to distal processes.

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, it remains unclear whether similar biological processes occur during healthy aging, albeit to a lesser degree. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Synaptic function is directly reflected in quantifiable ultrastructural features using electron microscopy (EM) approaches. This coupling of synaptic function and ultrastructure suggests that synaptic function can be inferred from EM analysis of human brain tissue. To investigate this, we employed focused ion beam-scanning electron microscopy (FIB-SEM), a volume EM (VEM) approach, to generate ultrafine-resolution, three-dimensional (3D) micrographic datasets of postmortem human dorsolateral prefrontal cortex (DLPFC), a region with cytoarchitectonic characteristics distinct to human brain.

View Article and Find Full Text PDF