Seed production on native seed farms has increased to meet the rising demand for plant material for restoration. Although these propagation efforts are necessary for restoration, cultivating wild populations may also result in unintentional selection and elicit evolutionary changes that mimic crop domestication, essentially turning these efforts into artificial domestication experiments. Here, we investigated whether phenotypic and genomic changes associated with domestication occurred in the wildflower Clarkia pulchella Pursh (Onagraceae) by comparing the wild source populations to the farmed population after eight generations of cultivation.
View Article and Find Full Text PDFAdaptive differentiation of traits and underlying loci can occur at a small geographical scale if natural selection is stronger than countervailing gene flow and drift. We investigated this hypothesis using coupled quantitative genetic and genomic approaches for a wind-pollinated tree species, Quercus rubra, along the steep, narrow gradient of the Lake Superior coast that encompasses four USDA Hardiness Zones within 100 km. For the quantitative genetic component of this study, we examined phenotypic differentiation among eight populations in a common garden, measuring seed mass, germination, height, stem diameter, leaf number, specific leaf area and survival.
View Article and Find Full Text PDFResurrection experiments provide a unique opportunity to evaluate phenotypic and molecular evolution in response to environmental challenges. To understand the evolution of urban populations of Helianthus annuus, we compared plants from 36-year-old antecedent seed collections to modern seed collections from the same area using molecular and quantitative genetic approaches. We found 200 differentially expressed transcripts between antecedent and modern groups, and transcript expression was generally higher in modern samples as compared to antecedent samples.
View Article and Find Full Text PDFNative seed for restoration is in high demand, but widespread habitat degradation will likely prevent enough seed from being sustainably harvested from wild populations to meet this need. While propagation of native species has emerged in recent decades to address this resource gap, few studies have tested whether the processes of sampling from wild populations, followed by generations of farm cultivation, reduce plant fitness tolerance to stress over time. To test this, we grew the eighth generation of farm-propagated Pursh (Onagraceae) alongside seeds from two of the three original wild source populations that established the native seed farm.
View Article and Find Full Text PDFBoreal forests are experiencing dramatic climate change, having warmed 1.0°-1.9°C over the last century.
View Article and Find Full Text PDF