Publications by authors named "J R Eisenbrey"

Article Synopsis
  • SHAPE is a noninvasive method to estimate blood pressure in organs by analyzing subharmonic signals generated by microbubbles in ultrasound; this study specifically tests how using a perfluorobutane gas core instead of sulfur hexafluoride affects the SHAPE response.
  • Experiments involved applying varying peak negative pressures and monitoring their effects on subharmonic signals, revealing that the perfluorobutane microbubbles initially do not produce subharmonics at low pressures but do generate a stable response under certain conditions.
  • The findings suggest that the gas core significantly influences subharmonic generation, which could lead to advancements in SHAPE techniques for better blood pressure estimation in clinical settings
View Article and Find Full Text PDF

Objectives: Contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) is used to definitively diagnose hepatocellular carcinoma (HCC) in patients at risk. However, the user variability associated with CEUS LI-RADS has not been validated in North American and European patients. This study aims to evaluate the inter-reader agreements of CEUS LI-RADS features for, and final categorization of, HCC in patients at risk.

View Article and Find Full Text PDF

Purpose: To determine the diagnostic accuracy of combining CEUS and CT/MRI LI-RADS major imaging features for the improved categorization of liver observations indeterminate on both CT/MRI and CEUS.

Materials And Methods: A retrospective analysis using a database from a prospective study conducted at 11 centers in North America and Europe from 2018 to 2022 included a total of 109 participants at risk for HCC who had liver observations with indeterminate characterization (LR3, LR-4, and LR-M) on both CEUS and CT/MRI. The individual CEUS and CT/MRI LI-RADS major features were extracted from the original study and analyzed in various combinations.

View Article and Find Full Text PDF

Polymer microbubbles have garnered broad interest as potential theranostic agents. However, the capabilities of polymer MBs can be greatly enhanced, particularly regarding the imaging performance and functional versatility of the platform. This study investigates integrating fluorescent carbon nanodots within polylactic acid (PLA) microbubbles.

View Article and Find Full Text PDF