Publications by authors named "J R Benz"

Cell-free enzymatic assays are highly useful tools in early compound profiling due to their robustness and scalability. However, their inadequacy to reflect the complexity of target engagement in a cellular environment may lead to a significantly divergent pharmacology that is eventually observed in cells. The discrepancy that emerges from properties like permeability and unspecific protein binding may largely mislead lead compound selection to undergo further chemical optimization.

View Article and Find Full Text PDF

Mycelium composite materials are comprised of renewable organic substrates interconnected by fungal mycelium, allowing full biodegradability after use. Due to their promising material properties, adaptability, and sustainable nature, these biomaterials are investigated intensively. However, one crucial aspect that has hardly been covered so far is the proportion of fungal biomass in the composites, which would be necessary to assess its contribution to the material characteristics.

View Article and Find Full Text PDF

D-Xylitol is a naturally occurring sugar alcohol present in diverse plants that is used as an alternative sweetener based on a sweetness similar to sucrose and several health benefits compared to conventional sugar. However, current industrial methods for D-xylitol production are based on chemical hydrogenation of D-xylose, which is energy-intensive and environmentally harmful. However, efficient conversion of L-arabinose as an additional highly abundant pentose in lignocellulosic materials holds great potential to broaden the range of applicable feedstocks.

View Article and Find Full Text PDF

Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of the endogenous signaling ligand 2-arachidonoylglycerol, a neuroprotective endocannabinoid intimately linked to central nervous system (CNS) disorders associated with neuroinflammation. In the quest for novel MAGL inhibitors, a focused screening approach on a Roche library subset provided a reversible benzoxazinone hit exhibiting high ligand efficiency. The subsequent design of the three-dimensional -hexahydro-pyrido-oxazinone (-HHPO) moiety as benzoxazinone replacement enabled the combination of high MAGL potency with favorable ADME properties.

View Article and Find Full Text PDF

Filamentous fungi with their diverse inventory of carbohydrate-active enzymes promise a holistic usage of lignocellulosic residues. A major challenge for application is the inherent repression of enzyme production by carbon catabolite repression (CCR). In the presence of preferred carbon sources, the transcription factor CreA/CRE-1 binds to specific but conserved motifs in promoters of genes involved in sugar metabolism, but the status of CCR is notoriously difficult to quantify.

View Article and Find Full Text PDF