Memristive devices are an emerging new type of devices operating at the scale of a few or even single atoms. They are currently used as storage elements and are investigated for performing in-memory and neuromorphic computing. Amongst these devices, Ag/amorphous-SiO/Pt memristors are among the most studied systems, with the electrically induced filament growth and dynamics being thoroughly investigated both theoretically and experimentally.
View Article and Find Full Text PDFIntroduction: The identification of alloantibodies to high-frequency antigens (HFA) and subsequent transfusion management can be challenging and often poses a problem in finding the compatible blood for transfusion. The aim of this study was to investigate the specificity of the antibody to the HFA causing a hemolytic transfusion reaction (HTR) and procure the compatible blood unit for future transfusion.
Case Presentation: A 4-year-old female met with a head injury that led to intracranial bleeding and surgical intervention was required to remove blood clots.
Emm is a high incidence red cell antigen with eight previously reported Emm- probands. Anti-Emm appears to be naturally occurring yet responsible for a clinically significant acute hemolytic transfusion reaction. Previous work suggests that Emm is located on a GPI-anchored protein, but the antigenic epitope and genetic basis have been elusive.
View Article and Find Full Text PDFBackground: Reduced D antigen on red blood cells (RBCs) may be due to "partial" D phenotypes associated with loss of epitope(s) and risk for alloimmunization or "weak" D phenotypes that do not lack major epitopes with absence of clinical complications. Genotyping of samples with weak and discrepant D typing is recommended to guide transfusion and RhIG prophylaxis. The goal was to compare the impact of RHD genotyping on transfusion practice in two centers serving different populations.
View Article and Find Full Text PDF