Publications by authors named "J Purhonen"

Dispersal is one of the main processes shaping ecological communities. Yet, for species-rich communities in natural systems, the role of dispersal in community assembly remains relatively less studied compared to other processes. This is the case for fungal communities, for which predictable knowledge about where and how the dispersal propagules move across space is largely lacking.

View Article and Find Full Text PDF

Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores.

View Article and Find Full Text PDF

Background And Aims: Antimicrobial proteins of the regenerating family member 3 alpha (REG3A) family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear since an immune-inflammatory context may preexist or coexist with cancer, as occurs in HCC. The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether its carbohydrate-binding functions are involved.

View Article and Find Full Text PDF

Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world.

View Article and Find Full Text PDF

Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is the end product of the hexosamine biosynthetic pathway and the substrate for protein O-linked N-acetylglucosaminylation (O-GlcNAcylation). Here, we present a protocol for the quantification of UDP-GlcNAc using an enzymatic microplate assay. We also detail procedures for the extraction of polar metabolites and total protein fraction for the parallel quantification of UDP-GlcNAc and the western blot analysis of O-GlcNAcylated proteins, O-linked N-acetylglucosamine transferase, and O-GlcNAcase from the same sample.

View Article and Find Full Text PDF