Chlorinated paraffins (CPs) are environmental pollutants extensively used in industries. While the use of short-chain chlorinated paraffins (SCCPs) has been restricted since 2017, the use of medium-chain chlorinated paraffins (MCCPs) has risen as their replacement. Due to lipophilic character, it can be expected that CPs enter the cells; however, the in vitro accumulation potential of CPs remains poorly understood.
View Article and Find Full Text PDFThe level of the human body's burden of benzophenone and camphor ultraviolet (UV) filters can be estimated from their urinary levels. The present study describes the implementations and validation of the sensitive analytical method for the analysis of seven benzophenone and two camphor UV filters in urine. Sample preparation includes overnight enzymatic hydrolysis and ethyl acetate extraction followed by purification by dispersive solid-phase extraction using a sorbent Z-Sep.
View Article and Find Full Text PDFShort- and medium-chain chlorinated paraffins (SCCPs and MCCPs) are environmental contaminants known for their persistence and bioaccumulation in fatty tissues. SCCPs are considered potential carcinogens and endocrine disruptors, with similar effects expected for MCCPs. This study investigated the body burden of SCCPs and MCCPs in residents of two regions of the Czech Republic with different levels of industrial pollution.
View Article and Find Full Text PDFThis study investigates the presence of perfluoroalkyl substances (PFAS) in the drinking water supplies in the Czech Republic using a risk-based monitoring approach. Tap water samples (n = 27) from sources close to areas potentially contaminated with PFAS were analysed. A total of 28 PFAS were measured using ultra-performance liquid chromatography with tandem mass spectrometry after solid phase extraction.
View Article and Find Full Text PDFThe knowledge of chloropropanediols (MCPD) fatty acid esters formation pathways is an important condition for these processing contaminants mitigation. This study aimed to assess the potential of a group of lipophilic environmental contaminants, polychlorinated alkanes, commonly known as chlorinated paraffins (CPs), to contribute to the formation of MCPD esters. Laboratory-scale model systems representing vegetable oils contaminated with both a technical mixture of short-chained CPs and individual short-chained CPs were designed and subjected to heat treatment (230 °C, 2 h) to simulate the deacidification and deodorisation processes.
View Article and Find Full Text PDF