Iron microparticles were coated with polypyrrole in situ during the chemical oxidation of pyrrole with ammonium peroxydisulfate in aqueous medium. A series of hybrid organic/inorganic core-shell materials were prepared with 30-76 wt% iron content. Polypyrrole coating was revealed by scanning electron microscopy, and its molecular structure and completeness were proved by FTIR and Raman spectroscopies.
View Article and Find Full Text PDFReplication forks stalled at co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage-religation cycles mediated by MUS81 endonuclease and DNA ligase IV (LIG4), which presumably relieve the topological barrier generated by the transcription-replication conflict (TRC) and facilitate ELL-dependent reactivation of transcription. Here, we report that the restart of R-loop-stalled replication forks via the MUS81-LIG4-ELL pathway requires senataxin (SETX), a helicase that can unwind RNA:DNA hybrids. We found that SETX promotes replication fork progression by preventing R-loop accumulation during S-phase.
View Article and Find Full Text PDFHybrid organic/inorganic conducting and magnetic composites of core-shell type have been prepared by in-situ coating of nickel microparticles with polypyrrole. Three series of syntheses have been made. In the first, pyrrole was oxidised with ammonium peroxydisulfate in water in the presence of various amounts of nickel and the composites contained up to 83 wt% of this metal.
View Article and Find Full Text PDFThis paper reports the conversion of a waste to a conducting material, exploiting the ability to adsorb pollutant organic dyes. Leather waste was carbonized at 800 °C in an inert nitrogen atmosphere. The resulting biochar was used for in-situ deposition of polypyrrole nanotubes produced by the oxidative polymerization of pyrrole in the presence of methyl orange.
View Article and Find Full Text PDFCombining highly conducting one-dimensional nanostructures of polypyrrole with cellulose nanofibers (CNF) into flexible films with tailored electrical conductivity and mechanical properties presents a promising route towards the development of eco-friendly electromagnetic interference shielding devices. Herein, conducting films with a thickness of 140 μm were synthesized from polypyrrole nanotubes (PPy-NT) and CNF using two approaches, i.e.
View Article and Find Full Text PDF