Publications by authors named "J Preciado"

NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATOR FACTOR 1/2 (ATAF1/2), and CUP-SHAPED COTYLEDON (CUC2)] transcription factors are key regulators of plant growth, development, and stress responses but were also crucial players during land plant adaptation and crop domestication. Using representative members of green algae, bryophytes, lycophytes, gymnosperms, and angiosperms, we expanded the evolutionary history of NAC transcription factors to unveil the relationships among members of this gene family. We found a massive increase in the number of NAC transcription factors from green algae to lycophytes and an even larger increase in flowering plants.

View Article and Find Full Text PDF

Introduction: Pediatric hearing loss can significantly impact speech, language, social, and educational development. Providing access to speech and environmental sounds using amplification devices, such as hearing aids, can help improve developmental outcomes. However, timely rehabilitation and intervention may be delayed due to limited access to resources, further prolonging the adverse effects of childhood hearing loss.

View Article and Find Full Text PDF

We present a method to infer the 3D pose of mice, including the limbs and feet, from monocular videos. Many human clinical conditions and their corresponding animal models result in abnormal motion, and accurately measuring 3D motion at scale offers insights into health. The 3D poses improve classification of health-related attributes over 2D representations.

View Article and Find Full Text PDF

Cancer recurrence is responsible for a high percentage of cancer-related deaths. Primary tumor removal, chemotherapy, and radiotherapy often leave behind cancer cells that are clinically undetectable. Recent evidence has shown that subpopulations of these residual cancer cells enter into a prolonged dormant state, remaining quiescent for months to years, and eventually lead to metastases and relapse (Sosa et al.

View Article and Find Full Text PDF

Leaf laminar growth and adaxial-abaxial boundary formation are fundamental outcomes of plant development. Boundary and laminar growth coordinate the further patterning and growth of the leaf, directing the differentiation of cell types within the top and bottom domains and promoting initiation of lateral organs along their adaxial or abaxial axis. Leaf adaxial-abaxial polarity specification and laminar outgrowth are regulated by two transcription factors, REVOLUTA (REV) and KANADI (KAN).

View Article and Find Full Text PDF