The cerebellum is a neural structure essential for learning, which is connected via multiple zones to many different regions of the brain, and is thought to improve human performance in a large range of sensory, motor and even cognitive processing tasks. An intriguing possibility for the control of complex robotic systems would be to develop an artificial cerebellar chip with multiple zones that could be similarly connected to a variety of subsystems to optimize performance. The novel aim of this paper, therefore, is to propose and investigate a multizone cerebellar chip applied to a range of tasks in robot adaptive control and sensorimotor processing.
View Article and Find Full Text PDFThe cerebellum is widely implicated in having an important role in adaptive motor control. Many of the computational studies on cerebellar motor control to date have focused on the associated architecture and learning algorithms in an effort to further understand cerebellar function. In this paper we switch focus to the signals driving cerebellar adaptation that arise through different motor behavior.
View Article and Find Full Text PDFSubstantial experimental evidence suggests the cerebellum is involved in calibrating sensorimotor maps. Consistent with this involvement is the well-known, but little understood, massive cerebellar projection to maps in the superior colliculus. Map calibration would be a significant new role for the cerebellum given the ubiquity of map representations in the brain, but how it could perform such a task is unclear.
View Article and Find Full Text PDFElectroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model.
View Article and Find Full Text PDFModels of the cerebellar microcircuit often assume that input signals from the mossy-fibers are expanded and recoded to provide a foundation from which the Purkinje cells can synthesize output filters to implement specific input-signal transformations. Details of this process are however unclear. While previous work has shown that recurrent granule cell inhibition could in principle generate a wide variety of random outputs suitable for coding signal onsets, the more general application for temporally varying signals has yet to be demonstrated.
View Article and Find Full Text PDF