Publications by authors named "J Popow"

KRASG12C selective inhibitors, such as sotorasib and adagrasib, have raised hopes of targeting other KRAS mutant alleles in cancer patients. We report that KRAS wild-type amplified tumor models are sensitive to treatment with the small molecule KRAS inhibitors BI-2493 and BI-2865. These pan-KRAS inhibitors directly target the "OFF" state of KRAS and result in potent anti-tumor activity in pre-clinical models of cancers driven by KRAS mutant proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the KRAS protein are common in cancer, with a notable example being the G12C mutation, which has targeted treatments.
  • Researchers developed a novel small molecule that can degrade many KRAS mutations, demonstrating more effective and lasting effects compared to traditional inhibition.
  • Their findings showed that this approach not only effectively kills cancer cells with KRAS mutations but also spares normal cells, leading to reduction in tumors in animal models.
View Article and Find Full Text PDF

Mutations in ERBB2 (encoding HER2) occur in 2% to 4% of non-small cell lung cancer (NSCLC) and confer poor prognosis. ERBB-targeting tyrosine kinase inhibitors, approved for treating other HER2-dependent cancers, are ineffective in HER2-mutant NSCLC due to dose-limiting toxicities or suboptimal potency. We report the discovery of zongertinib (BI 1810631), a covalent HER2 inhibitor.

View Article and Find Full Text PDF

KRAS is one of the most commonly mutated proteins in cancer, and efforts to directly inhibit its function have been continuing for decades. The most successful of these has been the development of covalent allele-specific inhibitors that trap KRAS G12C in its inactive conformation and suppress tumour growth in patients. Whether inactive-state selective inhibition can be used to therapeutically target non-G12C KRAS mutants remains under investigation.

View Article and Find Full Text PDF

Genetic networks are characterized by extensive buffering. During tumor evolution, disruption of functional redundancies can create de novo vulnerabilities that are specific to cancer cells. Here, we systematically search for cancer-relevant paralog interactions using CRISPR screens and publicly available loss-of-function datasets.

View Article and Find Full Text PDF